MATH 245 F19, Exam 3 Solutions

1. Carefully define the following terms: subset, intersection, De Morgan's Law (for sets).

Let A, B be sets. We say that A is a subset of B if every element of A is an element of B. Let A, B be sets. The intersection of A, B is the set $\{x: x \in A \wedge x \in B\}$. De Morgan's Law states: Let A, B, U be sets, with $A \subseteq U$ and $B \subseteq U$. Then $(A \cup B)^{c}=A^{c} \cap B^{c}$, and $(A \cap B)^{c}=A^{c} \cup B^{c}$.
2. Carefully define the following terms: cardinality, set of departure, irreflexive.

Let A be a set. The cardinality of A is the number of elements that A contains. Given sets A, B, and $R \subseteq A \times B$, the set of departure of R is A. Given a relation R on a set A, we say that R is irreflexive if, for all $a \in A,(a, a) \notin R$.
3. Prove, using definitions, that for all sets A, B, we have $(A \cup B) \backslash(A \cap B) \subseteq A \Delta B$.

This is half of Theorem 8.12a; citing this theorem is not a proof using definitions.
Let $x \in(A \cup B) \backslash(A \cap B)$. Then $(x \in A \cup B) \wedge(x \notin A \cap B)$. By simplification twice, $x \in A \cup B$ and $x \notin A \cap B$. Since $x \notin A \cap B, \neg(x \in A \wedge x \in B)$; i.e. $x \notin A \vee x \notin B(\star)$. Since $x \in A \cup B, x \in A \vee x \in B$. We have two cases, $x \in A$ and $x \in B$.

Case 1: If $x \in A$, by disjunctive syllogism with $(\star), x \notin B$. By conjunction, $x \in$ $A \wedge x \notin B$, and by addition $(x \in A \wedge x \notin B) \vee(x \in B \wedge x \notin A)$.
Case 2: If $x \in B$, by disjunctive syllogism with $(\star), x \notin A$. By conjunction, $x \in$ $B \wedge x \notin A$, and by addition $(x \in A \wedge x \notin B) \vee(x \in B \wedge x \notin A)$.

In both cases, $(x \in A \wedge x \notin B) \vee(x \in B \wedge x \notin A)$ and hence $x \in A \Delta B$.
4. Prove or disprove: For all sets A, B, C with $A \subseteq B, B \subseteq C$, and $C \subseteq A$, we must have $A=C$.
The statement is true, and is proved in two parts, $C \subseteq A$ and $A \subseteq C$. To prove $C \subseteq A$ is easy, as it is a hypothesis. To prove $A \subseteq C$, let $x \in A$ be arbitrary. Since $A \subseteq B$, we have $x \in B$. Since $B \subseteq C$, we have $x \in C$.
5. Prove or disprove: For all sets A, B, we must have $2^{A} \cup 2^{B}=2^{A \cup B}$.

The statement is false. Many counterexamples are possible, such as: Let $A=\{x\}, B=$ $\{y, z\}$. We must prove that $2^{A} \cup 2^{B} \neq 2^{A \cup B}$, which must be done with a counterexample within this counterexample.
METHOD 1: Set $\alpha=\{x, z\} . \alpha \subseteq A \cup B$, so $\alpha \in 2^{A \cup B}$. However, $\alpha \nsubseteq A$, so $\alpha \notin 2^{A}$. Also, $\alpha \nsubseteq B$, so $\alpha \notin 2^{B}$. By conjunction, $\alpha \notin 2^{A} \wedge \alpha \notin 2^{B}$. By De Morgan's Law (for propositions), $\neg\left(\alpha \in 2^{A} \vee \alpha \in 2^{B}\right)$, or $\neg\left(\alpha \in 2^{A} \cup 2^{B}\right)$. Hence $\alpha \notin 2^{A} \cup 2^{B}$.
METHOD 2: We explicitly calculate $2^{A}=\{\emptyset,\{x\}\}, 2^{B}=\{\emptyset,\{y\},\{z\},\{y, z\}\}$, and $2^{A \cup B}=\{\emptyset,\{x\},\{y\},\{z\},\{x, y\},\{x, z\},\{y, z\},\{x, y, z\}\}$. We also calculate $2^{A} \cup 2^{B}=$ $\{\emptyset,\{x\},\{y\},\{z\},\{y, z\}\}$. Now, we observe element $\{x, y\}$ is in $2^{A \cup B}$ but not in $2^{A} \cup 2^{B}$.
6. Prove or disprove: For all sets A, B, C with $A \subseteq B$ and $B \subseteq C$, we must have $A \times B \subseteq$ $B \times C$.
The statement is true. Let $x \in A \times B$ be arbitrary. Then $x=(y, z)$, with $y \in A$ and $z \in B$. Because $y \in A$ and $A \subseteq B$, in fact $y \in B$. Because $z \in B$ and $B \subseteq C$, in fact $z \in C$. Hence $x=(y, z)$ with $y \in B$ and $z \in C$, so $x \in B \times C$.
7. Prove or disprove: For all sets A, B, we must have $A \times B$ equicardinal with $(A \times B) \times A$.

The statement is false. To disprove requires a counterexample. Many are possible, such as: Let $A=\{x, y\}, B=\{z\}$. There are now two ways to continue.
METHOD 1 (explicit calculation): We have $A \times B=\{(x, z),(y, z)\}$, so $|A \times B|=2$. However, $(A \times B) \times A=\{((x, z), x),((y, z), y),((x, z), y),((y, z), x)\}$, so $|(A \times B) \times A|=$ 4.

METHOD 2 (theorem): We recall the theorem in the book that $|Y \times Z|=|Y||Z|$ for all finite sets Y, Z. We have $|A \times B|=|A||B|=2 \cdot 1=2$, and $|(A \times B) \times A|=$ $|A \times B||A|=2 \cdot 2=4$.

Note: It is not sufficient that our attempt to find a bijection between $A \times B$ and $(A \times B) \times A$ fails; perhaps a different attempt would succeed. For example, if $A=$ $B=\mathbb{Z}$, then in fact the two sets are equicardinal.
8. Let A, B be sets with $A \subseteq B$. Prove or disprove: For all transitive relations R on B, we must have $\left.R\right|_{A}$ also transitive.
The statement is true. Let $(x, y),\left.(y, z) \in R\right|_{A}$. Then $x, y, z \in A$, and $(x, y),(y, z) \in R$.
Since R is transitive on B, also $(x, z) \in R$. Since $x, z \in A$, in fact $\left.(x, z) \in R\right|_{A}$.
For problems 9,10 : Let $R=\{(1,1),(1,2),(2,3),(3,4),(4,1),(4,3)\}$, a relation on $A=$ $\{1,2,3,4\}$.
9. Draw the digraph representing R. Determine, with justification, whether or not R is each of: reflexive, symmetric, and transitive.

R is not reflexive because, e.g., $(2,2) \notin R$.
R is not symmetric because, e.g., $(2,3) \in R$ and $(3,2) \notin R$.
R is not transitive because, e.g., $(1,2),(2,3) \in R$ and $(1,3) \notin R$.
10. Compute $R \circ R$. Give your answer both as a digraph and as a set.

$$
R \circ R=\{(1,1),(1,2),(1,3),(2,4),(3,1),(3,3),(4,1),(4,2),(4,4)\} .
$$

Note: every missing or extra piece in a solution, will cost points.

